ELASTICITY (EL)

logo EL tiberCAD module Electromechanical modeling is becoming an essential tool to model modern devices particularly when the strain engineering is used to tune the electrical and optical properties of materials. Furthermore, an emergent class of devices, such as piezoelectric nanogenerators, are designed to convert the elastic energy into electricity. Elasticity brings features developed for continuous elasticity into device modeling. The coupled treatment of the electro-mechanical problem within a unique framework allows to explore the feasibility of devices where the mechanical deformation plays a fundamental role. Elasticity includes isotropic as well as anisotropic stiffness tensor to model the elastic properties of materials.

One of the main features of Elasticity is the possibility to calculate the strain induced by the lattice mismatch.
Once the strain map is computed, Drift-Diffusion may compute the electronic band bending due to the piezoelectric field and its effect on the electrical properties. This treatment is essential in those cases where the strain engineering plays a fundamental role such as in High Electrical Mobility Transistors (HEMTs).

el screenshot

Main characteristics of the model:

  • Continuous elasticity
  • Converse piezoelectric effect
  • Isotropic and anisotropic stiffness tensor
  • Lattice mismatch induced strain
  • Application of a external surface force
  • Clamp boundary condition